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In the paper, a pure nonlinear and damped two-mass oscillator excited with a periodical
force is considered. The oscillator is modelled with a system of two coupled second order
nonlinear and non-homogenous equations. Using the model, two problems are investigated:
one, identification of the excitation force for the known vibrating response of the system,
and the second, determination of vibrations of the system excited with the known periodical
force. Using the steady-state motion of the nonlinear oscillator, a method for identification
of the excitation force is developed. For the pure nonlinear oscillator, it is obtained that
the forcing function has the form of the Ateb function. However, if the excitation force is
known, the procedure for computing the steady-state vibration of the system is introduced.
The solution corresponds to steady-state vibrations of the free oscillator, but the amplitude
and phase are assumed to be time variable. The averaged solutions are obtained for the
pure nonlinear oscillator with an additional linear elastic force and for the van der Pol
oscillator. Analytically obtained solutions are compared with numerical ones. They are in
good agreement.

Keywords: non-harmonic excitation, force identification, steady-state motion, van der Pol
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1. Introduction

Recently, there are many investigations in nonlinear damped systems with periodic (non-
-harmonic) excitations. Thus, in 2017 more than 500 papers were published where this model or
its application was considered (see for example Scopus site). The huge interest in the model is
due to the fact that it describes phenomena in many machines and devices but also structures
and microelectromechanical (MEMS) and other systems where the excitation is non-harmonic.
For example, the influence of environment on the working properties of tools and gear systems
of mining machines for coal cutting (Jiang et al., 2016), ground cutting machines, but also in
wind turbine geared systems (Wei et al., 2016), is a multifrequency function. Usually, vibration
caused by this type of excitation is harmful and causes damage. However, the multi-harmonic
excitation in MEMS mixer-filters (Ramini et al., 2016) gives a positive effect in down-conversion
and filtering frequencies from radio frequencies to intermediate frequency signals. Vibration of
clamped-clamped microbeams in MEMS with periodic excitations are theoretically (Jaber et
al., 2016a,b) and experimentally (Ibrahim et al., 2017) investigated. It is shown that there is a
benefit of multi-frequency excitations in conversion of the signal in a wide frequency band. The
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periodic and not-harmonic excitation is applied in micro-mirror actuators (Ilyas et al., 2015),
too. For all of the mentioned investigations, it is common that the periodic excitation is known
and the response of the oscillator is determined mainly experimentally.

On the other hand, there are some results obtained in the identification of periodic excita-
tions based on the response of nonlinear damped or undamped oscillatory systems. In the paper
of Jang et al. (2011), a method was developed for identification of the external non-harmonic
loading acting on an oscillator with nonlinear restoring and damping. The response of the oscil-
lator was measured and the obtained data were applied for computing the excitation function. In
the papers of Hsu (1960), Rakaric et al. (2017) and also in Vakakis and Blanchard (2018), iden-
tification of the excitation was based on the steady state motion of the nonlinear and undamped
free oscillator. The procedure was limited to one-degree-of freedom oscillators.

In this paper, two problems are considered: 1) periodic forcing identification in a two-degree-
-of-freedom nonlinear damped oscillator based on the steady state motion of the corresponding
free oscillator, and 2) for the known periodic excitation, the response of the nonlinear damped
oscillator is obtained. The dimensionless mathematical model of the oscillator is

ẍ+ c(x− y)|x− y|α−1 + λ(ẋ− ẏ)|ẋ− ẏ|β−1 = F (t) + εf(x− y, ẋ− ẏ)
ÿ − c(x− y)|x− y|α−1 − λ(ẋ− ẏ)|ẋ− ẏ|β−1 = −εf(x− y, ẋ− ẏ)

(1.1)

where c is the stiffness coefficient, λ is the damping coefficient, α, β > 0, α, β ∈ R are orders on
nonlinearity (integer or non-integer values) and F (t) is the periodic excitation force. ε is a small
positive parameter ε≪ 1 which gives the small εf function. System (1.1) has two coupled strong
nonlinear equations with a time-periodic excitation. Already, some special cases of the oscillator
are investigated. Thus, free vibration of the nonlinear two-degree-of-freedom oscillator, where
the solution is assumed in the form of the Ateb function, is considered (Cveticanin, 2015). In the
papers of Kovacic and Zukovic (2017) and of Cveticanin and Zukovic (2017), a two-degree-of-
-freedom undamped Duffing oscillator with cubic nonlinearity excited with the periodical force
of the Jacobi elliptic type was investigated. The steady state amplitude-frequency relations were
computed.

Model (1.1) represent a general type of a pure nonlinear oscillator. An analytical method
for identification of the excitation force for system (1.1) based on the assumption that the
response of the system corresponds to free oscillations is developed. Besides, for different time-
-periodic excitations, steady-state solutions are obtained. In the paper, the perturbed motion of
the oscillator around the steady state is computed. The known asymptotic averaging method for
strong nonlinear perturbed differential equations (Cveticanin, 2018b) is adopted for solving Eqs.
(1.1). The method is based on the time variable amplitude and phase. The suggested procedure is
applied for an approximate solution of the oscillator with an additional linear elastic restitution
force and for the van der Pol oscillator. The obtained analytical solutions are compared with
numerical ones. They show a good agreement.

2. Excitation force identification

By adding and subtracting equations in (1.1), the transformed equations are

z̈ + 2cz|z|α−1 + 2λż|ż|β−1 = F (t) + 2εf(z, ż) s̈ = F (t) (2.1)

where

z = x− y, s = x+ y (2.2)
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Equation (2.1)1 is an uncoupled non-homogenous second order strong nonlinear equation, while
in Eq. (2.1)2 the variable s is the second derivative of the excitation force F (t). Relation (2.1)2
does not depend on the perturbation force εf . It depends only on the external excitation.
First, uncoupled equation (2.1)1 has to be considered. Equation (2.1)1 represents an oscillator

whose motion is perturbed with a small function εf . The corresponding unperturbed equation
is

z̈ + 2cz|z|α−1 + 2λż|ż|β−1 = F (t) (2.3)

Unfortunately, in Eq. (2.3), the excitation force F (t) is unknown. Our aim is to identify this
periodic function. Vakakis and Blanchard (2018) developed an identification method for the
special case of this equation when α = 3 and β = 1. They applied the steady state solution in
the form of the Jacobi elliptic function. Using the suggested procedure, the force identification
in Eq. (2.3) is done.
We decompose the excitation F (t) in undamped Fu(t) and damped Fd(t) components

(F (t) = Fu(t) + Fd(t)) and compute each component separately by satisfying the following
problems

z̈ + 2cz|z|α−1 = Fu(t) 2λż|ż|β−1 = Fd(t) (2.4)

Equation (2.4)1 corresponds to the undamped pure nonlinear oscillator. Assuming that the
vibration is steady-state, undamped subproblem (2.4)1 requires the force to be proportional
to z, i.e.

Fu = −U1z|z|α−1 (2.5)

where U1 is an unknown value. Substituting Eq. (2.5) into Eq. (2.4)1 one obtains

z̈ + (2c+ U1)z|z|α−1 = 0 (2.6)

The exact solution to Eq. (2.6) exists (see Cveticanin, 2018b and Appendix A), and it is

z = Aca(α, 1, Ωt) (2.7)

with

Ω2 = (2c+ U1)
α+ 1

2
Aα−1 (2.8)

where ca = ca(α, 1, Ωt) is the cosine Ateb periodic function (Rosenberg, 1966), Ω is the frequency
of the ca function and A is the amplitude response. The period of the Ateb function is

T =
2Π

Ω
Π = B

( 1

α+ 1
,
1

2

)

(2.9)

where B is the beta function. Thereby, steady state solution (2.7) is a periodic time function
with frequency (2.8) dependent on the amplitude A. Substituting solution (2.7) into Eq. (2.4)1
yields

Fu = −U1Aca|Aca|α−1 (2.10)

For the exact steady-state response z, we compute the periodic excitation of the oscillator that
is required to satisfy Eq. (2.4)2. Namely, using the derivative of Eqs. (2.7) and (2.8), we have

ż = −AΩ 2

α+ 1
sa(1, α,Ωt) (2.11)
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where sa = sa(1, α,Ωt) is the sine Ateb function (Rosenberg, 1966). Applying Eq. (2.11) in Eq.
(2.4)2, we obtain

Fd = −2λAΩ
2

α+ 1
sa
∣

∣

∣AΩ
2

α+ 1
sa
∣

∣

∣

β−1
(2.12)

Combining Eq. (2.10) and Eq. (2.12), the periodic force is written in the form

F (t) = Fu + Fd = P1ca|ca|α−1 + P2sa|sa|β−1 (2.13)

where

P1 = −U1Aα P2 = −2AβλΩβ
(α+ 1

2

)β
(2.14)

According to Eq. (2.8), we have

U1 = Ω
2 1

Aα−1
2

α+ 1
− 2c (2.15)

Applying Eq. (2.13), we obtain the excitation force

F (t) =
(

Ω2
2A

α+ 1
− 2cAα

)

ca|ca|α−1 + 2AβλΩβ
(α+ 1

2

)β
sa|sa|β−1 (2.16)

Force (2.16) has two terms. For both of them, it is common that they have the same frequency Ω.

3. Exact nonlinear resonance

Using the previous results, let us define the amplitude-frequency relation. Transforming expres-
sions (2.14) into

P2
P1
=
2λΩβ

(

2
α+1

)β

U1Aα−β
(3.1)

and using Eq. (2.15), we obtain the steady state response A−Ω for various ratios of P2/P1

2λΩβ
( 2

α+ 1

)β
Aβ−1 − P2

P1

(

Ω2
2

α+ 1
− 2cAα−1

)

= 0 (3.2)

Introducing the relation between the frequencies Ω and ω of the Ateb function and of the
oscillation, respectively

ω =
π

Π
Ω =

π

B
(

1
α+1 ,

1
2

)Ω (3.3)

the amplitude-frequency expression follows

2λ
(Π

π

)β
ωβ
( 2

α+ 1

)β
Aβ−1 − P2

P1

[(Π

π

)2
ω2
2

α+ 1
− 2cAα−1

]

= 0 (3.4)

Relation (3.4) is an exact nonlinear resonance relation, i.e. the exact nonlinear resonance curve
for the forced and damped system (2.3). In Fig. 1, A− ω diagrams for P2/P1 = −1, β = 1 and
various values of α are plotted.
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Fig. 1. A− ω diagrams for α = 3 and α = 5

From Fig. 1, it is seen that by increasing the frequency of vibration, the amplitude of vi-
bration increases, too. The velocity of the amplitude increase is faster for smaller orders of the
nonlinearity α.
For the special case when the damping is linear and β = 1, the amplitude-frequency relation

(3.4) simplifies into

ω = λ
π

Π

(α+ 1

2

)2P1
P2
±
√

[

λ
π

Π

(α+ 1

2

)2P1
P2

]2
+ 2cAα−1

α+ 1

2

( π

Π

)2
(3.5)

We recover the expression for free oscillation of the undamped and unforced truly nonlinear
oscillator as given in Cveticanin (2018a).

4. Exact solution of the unperturbed nonlinear oscillator

Using Eqs. (2.1) and the previous results, the oscillator excited with periodical force (2.13) yields

z̈+2cz|z|α−1+2λż|ż|β−1 = P1ca|ca|α−1+P2sa|sa|β−1 S̈ = P1ca|ca|α−1+P2sa|sa|β−1

In Fig. 2, diagrams of excitation force (2.13) for parameters Ω = 1, P1 = 1 and P2 = −1 and
various values of α and β are plotted. The values in the excitation force and in the equation are
assumed to be non-dimensional.

Fig. 2. Excitation force F (t) for β = 1, 2, 3 and: (a) α = 2, (b) α = 3

From the figure, it is obvious that the excitation force is periodical. The period of vibration
depends on α and is independent of β. The period is longer for higher values of α. The damping
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coefficient has influence on the amplitude of the excitation force: the higher the values of the
damping coefficient, the smaller the amplitude of the force.

For arbitrary parameters of the excitation P1 and P2, the exact steady state solution to Eqs.
(4.1) is (2.7), if relations (2.14) and (2.15) are satisfied. The steady state amplitude of vibration
and frequency of the excitation function are

2λ
( 2

α+ 1

)β
ΩβSA

β
S + P2 = 0 ΩS =

√

(

2cAα−1S − P1
AS

)α+ 1

2
(4.1)

In Tables 1a, 1b and 1c, values of AS , ΩS and frequency of vibration ω (Eq. (3.3)), respec-
tively, for c = 1, λ = 1, P1 = 1 and P2 = −1 are presented.

Table 1a. AS for various values of α and β

AS α = 1 α = 2 α = 3

β = 1 0.68301 0.84902 0.91754

β = 2 0.80902 0.94664 1.00000

β = 3 0.86439 0.98884 1.03498

Table 1b. ΩS for various values of α and β

ΩS α = 1 α = 2 α = 3

β = 1 0.73205 0.88336 1.08987

β = 2 0.87403 1.12040 1.41414

β = 3 0.91882 1.20401 1.53274

Table 1c. ω for various values of α and β

ω α = 1 α = 2 α = 3

β = 1 0.73025 0.65973 0.65291

β = 2 0.80902 0.83678 0.84721

β = 3 0.87403 0.89918 0.91882

Analysing the results presented in Table 1a, it is concluded that for the case when the order
of the elastic term α is constant, the amplitude of vibration is higher for higher values of the
order of the damping β. If the order β of damping is constant, the amplitude of vibration grows
by the increasing of α.

The frequency of the function ΩS and of vibration ω is also increasing with β (see Tables 1b
and 1c). However, the frequency ω of vibration decreases with an increase in α up to the minimum
value, and after that it increases also with α. The position of the minimal frequency is moving
toward higher values of α for smaller values of β.

Using the values AS and ΩS in Tables 1a and 1b and substituting into Eq. (2.7), the exact
solution to Eq. (4.1)1 is obtained.

4.1. Oscillator with linear damping

For oscillator (4.1)1 with linear damping, which is excited with the force

F (t) = P1ca|ca|α−1 + P2sa (4.2)

the exact solution is

z = ASca(α, 1, ΩS , t) (4.3)
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For excitation force (4.2), equation (4.1)2 is

s̈ = P1ca|ca|α−1 + P2sa (4.4)

Integrating Eq. (4.4) for the initial conditions s(0) = 0 and ṡ(0) = 0, we have

ṡ =
1

Ω
P1sa−

α+ 1

2Ω
P2(ca− 1) S =

α+ 1

2Ω2
(P1 + P2t)−

P1
Ω2

α+ 1

2
ca− α+ 1

2Ω
P2I (4.5)

where the integral I is given in Appendix B. Finally, substituting Eq. (4.3) and Eq. (4.5)2 into
Eq. (2.2), the motion of masses is

x =
α+ 1

4Ω2
(P1 + P2t) +

2Ω2AS − P1(α+ 1)
4Ω2S

ca− α+ 1

4ΩS
P2I

y =
α+ 1

4Ω2
(P1 + P2t)−

2Ω2AS + P1(α+ 1)

4Ω2S
ca− α+ 1

4ΩS
P2I

(4.6)

It can be seen that the motion of both masses is a sum of translational and oscillatory motion.
Vibrations of the masses are around the trajectory

xt = yt =
α+ 1

4Ω2
(P1 + P2t)

and are expressed as

xν =
2Ω2SAS − P1(α+ 1)

4Ω2S
ca− α+ 1

4Ω2S
P2I

yν = −
2Ω2SAS + P1(α + 1)

4Ω2S
ca− α+ 1

4Ω2S
P2I

(4.7)

4.1.1. Duffing oscillator

Let us consider the two-degree-of-freedom Duffing oscillator (α = 3) with linear damping
(β = 1) and parameters P1 = 1, P2 = −1, c = 1, λ = 1

z̈ + 2z3 + 2ż = ca3 − sa s̈ = ca3 − sa (4.8)

For the initial conditions z(0) = 0 and ż(0) = 0, and using the data from Table 1, the exact
analytical solution to Eq. (4.8)1 which describes relative motion of the masses is

z = 0.91754ca(3, 1, 1.08987t) (4.9)

Using relations (4.5), oscillatory motion of the masses is obtained

xν = −0.38311ca + 0.84188I3 yν = −1.3007ca + 0.84188I3 (4.10)

where I3 =
∫ t
0 ca(3, 1, 1.08987t) dt is computed numerically according to Appendix B. In Fig. 3a,

the z-t diagram for (4.9), and in Fig. 3b diagrams for (4.10) of oscillatory motion for both masses
are plotted. It is seen that the period of vibration for both masses is equal while amplitudes of
vibration are different. Mass 1 has the amplitude of vibration A1 = 0.38311 while mass 2 the
amplitude A2 = 1.3008.
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Fig. 3. Amplitude-frequency diagrams for Duffing oscillator: (a) z-t diagram, Eq. (4.9), (b) xν(t) and
vν(t) diagrams, Eq. (4.10), for mass 1 and mass 2, respectively

4.1.2. Oscillator with quadratic nonlinearity

For the oscillator with quadratic nonlinearity and linear damping, where the parameters are
P1 = 1, P2 = −1, c = 1, λ = 1, the equations of motion are

z̈ + 2z|z|+ 2ż = ca|ca| − sa s̈ = ca|ca| − sa (4.11)

For the initial conditions z(0) = 0 and ż(0) = 0, the exact analytical solution to Eq. (4.7)1 is

z = 0.8490244ca(2, 1, 0.88337t) (4.12)

Using Eqs. (4.7), oscillatory motion of the masses is obtained

xν = −0.53660ca + 0.96111I2 yν = −1.38562ca + 0.96111I2 (4.13)

where I2 =
∫ t
0 ca(2, 1, 0.88337t) dt. In Fig. 4a, z-t and in Fig. 4b, xν-t and yν-t oscillatory

diagrams are plotted.
Analysing pure oscillatory motion of masses 1 and 2 (see Fig. 4b), it is evident that the

period of vibration for both masses is equal while mass 1 has the amplitude A1 = 0.53660 and
mass 2 the amplitude A2 = 1.38562.

Fig. 4. Amplitude-frequency diagrams for the oscillator with quadratic damping:
(a) z-t diagram, Eq. (4.12), (b) xν(t) and yν(t) diagrams, Eq. (4.13), for mass 1 and mass 2, respectively

Comparing Fig. 3 and Fig. 4, we see that the amplitude of relative oscillatory motion z
is higher for a higher order of the nonlinearity α. Besides the amplitudes of vibration of both
masses in the system are smaller if the nonlinearity is higher.
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5. Approximate solution for the perturbed oscillator

We consider the case when the oscillator is perturbed with a small force. Using model (2.1), it is
seen that the perturbation force has an effect on relative motion of the masses. Solving equation
(2.1), the influence of perturbation on the relative motion is obtained.
The solving procedure is based on the assumption that the solution of perturbed equation

(2.1) is a perturbed version of the exact solution of unperturbed oscillator (2.3)

z̈ + 2cz|z|α−1 + 2λż|ż|β−1 = P1ca|ca|α−1 + P2sa|sa|β−1 (5.1)

Namely, using Eqs. (2.7) and (2.8) with Eq. (2.15), we assume the solution to (2.1)1 in the form

z = A(t)ca(α, 1, ψ(t)) ż = −A(t) 2
α+ 1

Ωsa(1, α, ψ(t)) (5.2)

where

ψ̇ = Ω + θ̇(t) (5.3)

Ω is according to Eq. (3.2)

KA(t)βΩβ = A(t)Ω2
2

α+ 1
− 2c(A(t))α (5.4)

with

K = 2λ
P1
P2

( 2

α+ 1

)β
(5.5)

and A(t) and θ(t) are unknown time functions. Namely, as equation (2.1)1 is the perturbed
version of Eq. (2.3), it is supposed that its solution (5.2) has to be the perturbed version of Eqs.
(2.7) and (2.8).
Let us rewrite equation (2.1)1 in the new variables A and θ. Comparing the time derivative

of Eq. (5.2)1

ż = −A(t) 2
α+ 1

Ωsa(1, α, ψ(t)) + Ȧ(t)ca(α, 1, ψ(t)) −A(t) 2
α+ 1

θ̇(t)sa(1, α, ψ(t)) (5.6)

with Eq. (5.2)2, the constraint follows as

Ȧca−A 2

α+ 1
θ̇sa = 0 (5.7)

where A(t) = A, θ(t) = θ, ψ(t) = ψ, sa(1, α, ψ(t)) and ca(α, 1, ψ(t)) = ca. Substituting Eqs.
(5.2) and the time derivative of Eq. (5.2)2

z̈ = −Ȧ 2

α+ 1
Ωsa−A 2

α+ 1
Ω̇sa−A 2

α+ 1
Ω2caα −A 2

α+ 1
Ωθ̇caα (5.8)

into Eq. (2.1)1, and after some modification, we obtain

−(ȦΩ +AΩ̇) 2
α+ 1

sa−A 2

α+ 1
Ωθ̇caα = 2εf

(

Aca,−A 2

α+ 1
Ωsa

)

(5.9)

where Ω(A). Substituting the time derivative of Eq. (5.4) into Eq. (5.9), it follows

ȦΦ(A,Ω)sa+A
2

α+ 1
Ωθ̇caα = −2εf

(

Aca,−A 2

α+ 1
Ωsa

)

(5.10)
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where

Φ(A,Ω) =
4

α+ 1

Ω2 + cα(α + 1)Aα−1

4Ω −Kβ(α+ 1)(AΩ)β−1 (5.11)

Equations (5.7) and (5.10) with Eq. (5.11) represent the equation of motion of the oscillator with
perturbation (2.1)1 rewritten into the variables A and θ. Separating the derivatives Ȧ and θ̇ in
Eq. (5.7) and Eq. (5.10), the following relations are obtained

Ȧ[Φ(A,Ω)sa2 +Ωcaα+1] = −2εf
(

Aca,−A 2

α+ 1
Ωsa

)

sa

Aθ̇
2

α+ 1
[Φ(A,Ω)sa2 +Ωcaα] = −2εf

(

Aca,−A 2

α+ 1
Ωsa

)

ca

(5.12)

This is the point the averaging procedure is introduced. Averaging the Ateb functions over
period (2.9), it is

Ȧ〈Φ(A,Ω)sa2 +Ωcaα+1〉 = −2
〈

εf
(

Aca,−A 2

α + 1
Ωsa

)

sa
〉

Aθ̇
2

α+ 1
〈Φ(A,Ω)sa2 +Ωcaα〉 = −2

〈

εf
(

Aca,−A 2

α + 1
Ωsa

)

ca
〉

(5.13)

Solution to averaged equations (5.13) gives an approximate solution for z. For the special case
when

β =
2α

α+ 1
(5.14)

the averaged equations simplify into

ȦΩ = −2
〈

εf
(

Aca,−A 2

α+ 1
Ωsa

)

sa
〉

AΩθ̇
2

α+ 1
= −2

〈

εf
(

Aca,−A 2

α + 1
Ωsa

)

ca
〉

(5.15)

The order of damping is limited in the interval β ∈ [1, 2), while the order of nonlinearity is
α ∈ [1,∞).
Two special cases are considered: first, when the perturbation depends only on z and second,

when it is of van der Pol type.

5.1. Oscillator perturbed by a small displacement function

In the case when the perturbation depends only on the relative displacement z, the averaged
equations (5.13) are

ȦΩ = −2〈εf(Aca)sa〉 AΩθ̇
2

α+ 1
= −2〈εf(Aca)ca〉 (5.16)

After averaging, it is A = AS = const , i.e., the amplitude is equal to the steady state one,
whereas θ = ωt, where

ω = − α+ 1
ASΩS

〈εf(ASca)ca〉

Finally, the approximate relative motion of the mass-in-mass oscillator is

Z = ASca(α, 1, (ΩS + ω)t) (5.17)
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where the period of vibration is

T =
2Π

ΩS + ω
=

2B
(

1
α+1 ,

1
2

)

ΩS − α+1
ASΩS

〈εf(ASca)ca〉
(5.18)

and AS and ΩS are given in Tables 1a and 1c. The period of vibration is longer for the perturbed
than for the unperturbed oscillator.
If the perturbation is by a small linear elastic force and εf = −εz, the period of vibration is

T =
2B
(

1
α+1 ,

1
2

)

ΩS + ε
α+1
ΩS
〈ca2〉 (5.19)

It is obvious that the period of vibration is shorter for the perturbed oscillator than for the
unperturbed one: the period is decreasing by the increasing of the perturbation parameter ε.
To prove the accuracy of Eq. (5.19), the analytically obtained period is compared with the

numerically obtained one by solving the equation of motion

z̈ + 2z|z|α−1 + 2ż = ca|ca|α−1 − sa− 2εz (5.20)

In Table 2, the analytically and numerically calculated periods of vibration for ε = 0.1 and
various values of α are compared.

Table 2. Periods of vibration T and TN as functions of α

α = 2 α = 5/2 α = 3

T 9.37856 9.51909 9.61999

TN 9.38163 9.52003 9.62117

It is obvious that the difference between the analytically and numerically calculated periods
is negligible.

5.2. Oscillator of van der Pol type

If the perturbation is of the van der Pol type is introduced

εf(z, ż) = εż(1− z2) (5.21)

the averaged equations (5.15) are transformed into

Ȧ =
4εA

α+ 1
(〈sa2〉 −A2〈sa2ca2〉) θ̇ = 0 (5.22)

Solving the first order Abel equation (5.22), we obtain

A =
εAS exp

(

2〈sa2〉
α+1 t

)

√

1− ε2A2S
〈sa2ca2〉
〈sa2〉

[

1− exp
(

4〈sa2〉
α+1 t

)]

θ = 0 (5.23)

Analysing Eq. (5.23), it is seen that for the limit case, when t→∞, the amplitude of vibration
tends to the steady state value

A =

√

〈sa2〉
〈sa2ca2〉 (5.24)
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Thus, the van der Pol oscillator

z̈ + 2z|z|α−1 + 2ż = ca|ca|α−1 − sa+ 2εż(1− z2) (5.25)

tends to the limit cycle motion with amplitude (5.24).

In the case when the order of nonlinearity is α = 3, the limit cycle amplitude is A = 0.91875,
and for α = 2 it is A = 0.850892. Comparing the values with those in Table 1, it is obvious that
the van der Pol perturbation causes an increase in the vibration amplitude in comparison to the
unperturbed oscillator.

6. Conclusions

In this paper, generalization of two mass two-degree-of-freedom pure nonlinear oscillators with
strong damping and a non-harmonic excitation is considered. First, the method for identification
of the excitation force in the nonlinear and damped oscillator with two-degrees-of-freedom is
developed. The suggested procedure is based on application of the exact steady state solution of
the free oscillator obtained analytically. The computed multi-periodic force is simplified into the
periodic Ateb function, which is very convenient for mathematical application. The excitation
force is the sum of ca and sa functions whose order depends on the nonlinearity and damping
orders of the system.

In the paper, the exact nonlinear resonance expression is determined. For the pure nonlinear
oscillator, only one stable branch of the amplitude-frequency curve exists. For a higher order of
nonlinearity, the bending of the curve is higher.

In the paper, the response of the oscillator excited with a certain periodic force is investigated.
Condition (4.1) for the steady state solution which corresponds to motion of the free undamped
oscillator is obtained. The exact values of frequency and amplitude parameters of vibration are
computed. Analysing the results, it is concluded that for a higher order of nonlinearity and
a higher order of damping, the amplitude of vibration is higher. However, the frequency of
vibration decreases with the increasing of the order of nonlinearity up to the minimum value,
and after that it increases. The position of the minimum frequency is moving toward smaller
values of order of the nonlinearity for higher values of damping.

If steady-state motion of the oscillator is perturbed, the amplitude and frequency of oscilla-
tions are varying in time. In the paper, a procedure for solving perturbed motion of the strong
nonlinear, damped and excited oscillator based on the assumption that for a small perturbation
the variation of motion in comparison to the unperturbed one is quite small is developed. Special
attention is given to two problems: first, when the perturbation function is a linear function of
displacement and second, when the van der Pol damping force acts. For linear perturbation,
the amplitude of vibration is not varying, but the period of vibration is shortening. In the case
of van der Pol perturbation, the limit cycle motion is obtained. The approximate steady state
limit value depends on the order of nonlinearity and it is higher the higher the order of nonli-
nearity. The obtained analytical results are compared with numerical ones. They are in a good
agreement.

The results presented in the paper would be interesting in the design of structures with
periodic forcing but steady state oscillatory motion. This type of motion would increase the
working life of the system.

In this paper, the integral of the ca Ateb function is introduced for the first time. The
integral is obtained analytically, but also numerically. It is concluded that the obtained function
is periodical with a period equal to the period of the corresponding ca function. Increasing the
parameter α, the period of the obtained integral function is longer and the amplitude is higher.
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A. Appendix

The first integral of Eq. (2.6) is

ż2

2
+Kzα+1 = Q (A.1)

where

K =
2c+ U1
α+ 1

(A.2)

and Q = const depending on the initial conditions. For the initial condition z(0) = A = const

Q = KAα+1 (A.3)

Introducing a new variable

ν =
K

Q
zα+1 (A.4)

and applying some modifications, Eq. (A.1) transforms into

1

α+ 1

√

2

Q

(Q

K

)

1

α+1

(

1

2

0¬z¬1
∫

0

dν√
1− ννα/(α+1)

)

= t (A.5)

Using the definition of the incomplete Beta function

1

2
Bν
( 1

α+ 1
,
1

2

)

=
1

2

0¬z¬1
∫

0

dν√
1− ννα/(α+1) (A.6)

Eq. (A.5) becomes

1

2
Bν
( 1

α+ 1
,
1

2

)

= t(α+ 1)

√

Q

2

(K

Q

)

1

α+1

(A.7)

Introducing (A.2) and (A.3) into (A.7) and using the inverse incomplete Beta function (see
Cveticanin and Pogany, 2012) the solution to (A.1) has the form of the so called cosine Ateb
function (Rosenberg, 1966)

z = Aca

(

α, 1, t(α + 1)

√

2c+ U1
α+ 1

Aα+1

2
A−1

)

(A.8)

Finally

z = Aca

(

α, 1, t

√

(2c+ U1)(α + 1)

2
A
α−1

2

)

(A.9)
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The frequency of the function is

Ω =

√

2c+ U1)(α+ 1)

2
A
α−1

2 (A.10)

Integrating (A.6) in the interval [0, 1], the incomplete Beta function transforms into the complete
Beta function

1

2
B
( 1

α+ 1
,
1

2

)

=
1

2

1
∫

0

dν
√
1− νν

α

α+1

(A.11)

Substituting (A.11) into (A.5), a quarter of the period T of the Ateb function is obtained

T

4
=
1

2

1

α+ 1

√

2

Q

(Q

K

)

1

α+1

B
( 1

α+ 1
,
1

2

)

(A.12)

Using (A.2) and (A.3) and comparing (A.12) and (A.10), it follows

T =
2Πα
Ω

(A.13)

where

Πα = B
( 1

α+ 1
,
1

2

)

(A.14)

The function which has a phase difference of (A.9) corresponds to the sine Ateb function

z = Asa

(

α, 1,
Πα
2
+ t

√

(2c+ U1)(α+ 1)

2
A
α−1

2

)

(A.15)

Let us mention some of the properties of Ateb functions. The relation between ca and sa Ateb
functions is

caα+1(α, 1, z) + sa2(1, α, z) = 1 (A.16)

In addition, the first derivatives of sa and ca functions are

d

dz
ca(α, 1, z) = − 2

α+ 1
sa(1, α, z)

d

dz
sa(1, α, z) = caα(α, 1, z) (A.17)

B. Appendix

Let us compute the integral

I =

t
∫

0

ca(α, 1, t) dt (B.1)

Using relation (A.16) and introducing a new variable

ν = 1− sa2(1, α, t) (B.2)
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Fig. 5. Integral of the ca function for α = 1 (blue line), α = 2 (green line) and α = 3 (red line)

integral I transforms into

I = −1
2

ν
∫

1

1√
1− ν ν

1−α

1+α dν (B.3)

Utilizing the definition of the incomplete Beta function Bν(a, b) =
∫

ν ν
a−1(1− ν)b−1 dν we have

I = −1
2
Bν
(

ν,
1

α+ 1
,
1

2

)

(B.4)

In Fig. 5, obtained integral (B.4) for various values of α is plotted.

It is seen that the integral of the ca function is a periodical function with a period which
is equal to the period of the corresponding ca function T = 2Πα = 2B(1/(α + 1), 1/2). The
amplitude of vibration and period length of integral I is higher for higher values of α.
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